3.462 \(\int \cos ^2(c+d x) (a+b \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=50 \[ \frac{1}{2} x \left (a^2+2 b^2\right )+\frac{a^2 \sin (c+d x) \cos (c+d x)}{2 d}+\frac{2 a b \sin (c+d x)}{d} \]

[Out]

((a^2 + 2*b^2)*x)/2 + (2*a*b*Sin[c + d*x])/d + (a^2*Cos[c + d*x]*Sin[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0657883, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3788, 2637, 4045, 8} \[ \frac{1}{2} x \left (a^2+2 b^2\right )+\frac{a^2 \sin (c+d x) \cos (c+d x)}{2 d}+\frac{2 a b \sin (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + b*Sec[c + d*x])^2,x]

[Out]

((a^2 + 2*b^2)*x)/2 + (2*a*b*Sin[c + d*x])/d + (a^2*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) (a+b \sec (c+d x))^2 \, dx &=(2 a b) \int \cos (c+d x) \, dx+\int \cos ^2(c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac{2 a b \sin (c+d x)}{d}+\frac{a^2 \cos (c+d x) \sin (c+d x)}{2 d}+\frac{1}{2} \left (a^2+2 b^2\right ) \int 1 \, dx\\ &=\frac{1}{2} \left (a^2+2 b^2\right ) x+\frac{2 a b \sin (c+d x)}{d}+\frac{a^2 \cos (c+d x) \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0718922, size = 46, normalized size = 0.92 \[ \frac{2 \left (a^2+2 b^2\right ) (c+d x)+a^2 \sin (2 (c+d x))+8 a b \sin (c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + b*Sec[c + d*x])^2,x]

[Out]

(2*(a^2 + 2*b^2)*(c + d*x) + 8*a*b*Sin[c + d*x] + a^2*Sin[2*(c + d*x)])/(4*d)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 51, normalized size = 1. \begin{align*}{\frac{1}{d} \left ({a}^{2} \left ({\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2}}+{\frac{dx}{2}}+{\frac{c}{2}} \right ) +2\,ab\sin \left ( dx+c \right ) +{b}^{2} \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+b*sec(d*x+c))^2,x)

[Out]

1/d*(a^2*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+2*a*b*sin(d*x+c)+b^2*(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.15161, size = 63, normalized size = 1.26 \begin{align*} \frac{{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} + 4 \,{\left (d x + c\right )} b^{2} + 8 \, a b \sin \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

1/4*((2*d*x + 2*c + sin(2*d*x + 2*c))*a^2 + 4*(d*x + c)*b^2 + 8*a*b*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.60525, size = 93, normalized size = 1.86 \begin{align*} \frac{{\left (a^{2} + 2 \, b^{2}\right )} d x +{\left (a^{2} \cos \left (d x + c\right ) + 4 \, a b\right )} \sin \left (d x + c\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/2*((a^2 + 2*b^2)*d*x + (a^2*cos(d*x + c) + 4*a*b)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \sec{\left (c + d x \right )}\right )^{2} \cos ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**2*cos(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.26894, size = 130, normalized size = 2.6 \begin{align*} \frac{{\left (a^{2} + 2 \, b^{2}\right )}{\left (d x + c\right )} - \frac{2 \,{\left (a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 4 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 4 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*((a^2 + 2*b^2)*(d*x + c) - 2*(a^2*tan(1/2*d*x + 1/2*c)^3 - 4*a*b*tan(1/2*d*x + 1/2*c)^3 - a^2*tan(1/2*d*x
+ 1/2*c) - 4*a*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^2)/d